|_efteris M. Kirousis

Computer Technology Institute, University of Patras
P.O. Box 1122, 26110 Fatras, Greece

Evangelos Kranakis

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

We are interested in implementations of concurrent high level objects from
weaker lower level objects which are free from the usual control primitives, like
mutual exclusion, test-and-set, etc. We give a survey of the most important
recent results concerning such wait-free implementations of atomic multiwriter,
multireader shared registers. We present several algorithms for constructing
atomic bits from safe bits, atomic multivalued shared variables from atomic bits,
as well as atomic multireader and multiwriter shared variables from multivalued
single writer, single reader shared variables. We also discuss several methods
for proving the correctness of concurrent reader concurrent writer protocols.

Qui scribit bis legit
Whoever writes reads twice
LATIN PROVERB

You read, but understood not;
for if you had understood,

you would have not condemned
C. P. CAVAFY

Research partially supported by the ESPRIT II Basic Research Actions Program of the EC
tder contract no. 3075 (Project ALCOM).

opyright © 1989, Stichting Mathematisch Centrum, Amsterdam
inted in the Netherlands

arall eE execu ﬂnn of program

tions need aken ! ~ -
bled by the writer before com pleuon of its action. B ' lalizing con-
current actions using synchi onization pn itives like mutual exclusion, test-
and-set, Eockom semaphores, etc., the data is effectively protected from such
ich guarantee exclusive access to
d hardware level.
cri nc al use of syncnron 17 primitives 1n m ultip TrOCESSor
nments and par allel macl ines whose na mr al environment i1s meant to
antage of the best aspects of parall clism would seem rather inap-
propriate. No doubt, there are several tasks, like access to a peripheral device,
where exclusiveness is necessary, and therefore it i1s 1mp0551ble to implement
them without resort to the above synchronization primutives. However for
other msks (like airline reservation systems) exclusiveness 1s not so umportant.
For exan in the case of a shared file all that may matter 1s to be able to
read the most recent correct version of the file.
[herefore the question arises as to which programming tasks can be imple-
mented without resort to waiting mechanisms and how. Part of the answer
seems to be that we need to discard Von Neumann’s concept of centralized
architecture and consider instead multiprocessor architectures with true paral-
lelizable characteristics. Such multiprocessor environments are within the reach
of today’s technology [15]. However the main problem still remains. How can
we coordinate the activities of the numerous processors at the software level in
such a way that on the one hand we take full advantage of the merits of paral-
lelism (e.g. increased speed of program executions) and on the other hand we
guarantee the accurate implementation of the objects (like concurrent reading
and concurrent wrnting) concerned? The answer to this question is not obvious.
It 1s the purpose of the present paper to outline how to develop algorithms
that 1mplement ‘objects’ with optimal serializability characteristics via other
lower level objects in a wait-free environment. Nevertheless, one thing seems
clear. As has been pointed out by Lamport [24], to implement such N1t1ves
we need interprocess communication through a shared memory unit, also
called shared register or shared variable.
It should also be noted that wait-free protocols are of particular interest not
only because they are free from the usual control primitives (like, mutual
exclusion, test-and-set, etc.) but also because they make possible a quantitative

appraisal of the complexity of the various algorithms considered, e.g. determin-
ing the protocol with best running time.

. 1HE CONCURRENT READERS AND WRITERS PROBLEM

[hroughout the present paper, the terms (shared) variable and (shared) register
have 1dentical meanings. In very simple terms the CRCW (Concurrent
Readers, Concurrent Writers) problem can be described as follows. There is a

308

no waiting (1.e. a processor should never have to wait for another proces-
sor to finish 1ts action before it executes its own),
CXCEU S1 On S€ma l g, test-and-set , €lC,

processors do not have access to a global

reference system).
[he above assumptions define what the requ

rements for a proper solution
should be. Moreover the only solutions to the CRCW problem we will be
interested in are protocols that satisfy the above conditions.

We will not attempt to define here rigorously what a wait-free protocol 1s.
Intuitively, however, by wait-free implementation of a concurrent-data object
we understand a protocol or algorithm which can be executed by any proces-
sor in the system in a finite number of steps which 1s independent of the exe-
cution speeds of the processors involved. Several programs for implementing
these protocols will be given later. Intuitively they should be constructed
inductively using ‘appropriate’ initial assignment statements, and program
statements constru cted fmm these by 1terating the two operators
ﬁf == - E eI :--"'": ., 1 (O -~ O . Wh exre oo 1 S a Sequ EniCce
of program statements at an earlier stage of the inductive construction [2].

2.1. The implementation problem
[he implementation problem can be described as follows.
registers each capable of stor

We are given some
g words of a fixed length and with certain res-
trictions on their mode of operation, e.g. that only a certain number of proces-
sors are allowed to access each one of them; also, we assume that these regis-
ters satisfy certain serializability properties (i.e., a succession of reads and
writes on the registers must, in some degree, be serializable). By using these
registers (often called subregisters) as building blocks, we are asked to con-
struct a more powerful con pound register capable of storing words of (possi-
bly) even longer length, with (possibly) more relaxed accessibility restrictions
and the same or even stronger serializability properties. The subregisters will
be stmctured according to an architecture (e.g., a matrix or a sequence of
buffers) and moreover each operation (i.e., read or write) on the compound
register will consist of a succession of operations on the subregisters executed
according to a protocol. The architecture together with the protocol will
guarantee the stronger properties we require from the con pound register. The
protocol will often utilize variables local to each processor. These local vari-
ables should, of course, be distinguished from the shared variables of the pro-
tocol which are none other than the subregisters used by the architecture.

309

to the strength of the senalizability conditions they
lowing four types of registers: safe, norm
lar, and atomic. A register is called safe (respectively, normal, regular, atomic)
if any system execution on the register (i.e., any succession of operation execu-
tions) is safe (respectively, normal, regular, atomic). For single writer registers,
a system execution is safe if every read that does not overlap a write returns
the most recent value, otherwise 1t may return an arbitrary value (with the res-
triction that it is within the set of values the register 1s allowed to assume). A
system execution is normal if every read returns the value of a write that either

ecedes this read or is concurrent with 1t. A system execution 1s regular if it is
10rmal and moreover no read returns a value that at the time this read begins
has been already overwritten by another value.

Finally, a system execution is atomic if reads and writes behave as if they
were linearly ordered. (This intuitive definition of atomicity is also valid for
multiwriter registers, see Section 5.2.) More formally, a system execution is
atomuic 1if
1. There exists a total (i.e., linear) order extending the natural order in which

the operation executions on the compound register have taken place
(external consistency). This order, in some sense, represents the succession
these operations seemingly follow.
2. There 1s no second write placed by this linear order between a read and
the write 1t reads (internal consistency).
If we assume that there is a global time-reference system (i.e. that an observer
could correctly time the beginning and end of all actions by all the subregis-
ters) and if all subactions of an operation execution on the compound register
precede in time all the subactions of a second operation execution on the com-
pound register, then, by property (1) above, this order must place the second
operation execution after the first one. In general, the natural order of the
operation executions referred to at property (1) above, is imposed by the prob-
lem (e.g., it may be an acyclic relation that tells us if an operation execution
can have an influence on another). -

For simplicity we will use the following notations and abbreviations. By
mWnRbB register we abbreviate an m-writer, n-reader, b-bit register. This
means that the shared variable can hold values which are b bits long, can be
written by m processors (the writers) and read by n processors (the readers). If
we want to stress the fact that the register assumes the values {0,1,...,v — 1}
(i.e. 1t is v-valued) then we write mWnRvV. Clearly, mWnRbB is equivalent to
mWnR2°V. A safe (normal, regular, atomic) 1W 1R 1B register 1s also called
safe (normal, regular, atomic) bit. Safe bits are also known as ‘flip-flops’ (see
Section 2.3) to indicate their resemblance to the bistable components used in
computer manufacturing. Regular bits are also called ‘fhickering’ bits to indi-
cate the flickering behaviour of the shared variable over the duration of a
write.

To facilitate our understanding the replication and distribution problems are
conveniently split into the following easier constructions (however, this does
not rule out the possibility of bypassing one or more of the steps below):

310

1bit reglsters from atomic bits,
m3 writer, m umma der, multibit registers from
WHE@I s ngle reader, multibit registers and
mic, multiprocessor, multibit registers from atomic, single writer, mul-
multibit reg: sﬁers

alread Y
ere it 1s emetely stated that
rt” only facilities ‘restricted to
for ‘collateral’ (a weak form of concurrent) ‘pro-

hronization primitives
and [16] (see [6] for a very eloquent description of these primitives). The prob-
m of concurrency control with readers and writers was also considered by [9],
hich offers two solutions to a restricted version of the CRCW problem. In
their first solution they dem nd that ‘no reader should be kept wanmg unless a
writer has al: ain rmission to use the shared resource’. In the
second solution they demand that not only ‘the writers must have exclusive
access while readers may share’, but that in addition ‘once a writer is ready to
write it perfoms its write as soon as possible’. Clearly, neither of these solu-
tions provide satisfactory answers to the CRCW problem posed here because
they impose waiting on the processors.

[he first to isolate and pose the problem of atomic, wait-free 1
tion of concurrent objects in its present ‘single wrter’ form were L. Lamport
[24] and G. Peterson [39]. Lamport discusses in [24] extensively the hierarchs
cal nature of system executions, proposes protocols for distributing the value
of a shared variable among two processors, one writing and the other reading,
and classifies registers in three types according to increasing serializability
characteristics: safe, regular and atomic. At the same time G. Peterson [39]
considers the problem of distnbuting a shared variable among many readers,
although at the time it was not known how to construct such shared variables
from even simpler (non-atomic) ones. The multiwriter multireader problem

remained dormant for a few years (and 1t almost looked as if 1t would turn out

to be impossible to solve) till it was explicitely posed by N. Lynch in her
ar series. Its most recent revival 1s due to P. Vitanyr and B. Awerbuch

SEIN11
[43] who attempted to implement wait-free multiprocessor Protocols from the

most basic shared vanables possible, the ‘1dealized’ flip-flops.

the ALGOL68 report M%
the none-to-advanced state of the a

nplementa-

311

2.3. Idealized flip-flops

As mentioned above

the basic problem in the CR
it safe registers. B >d that such
calized objects of our imagination. The closest
iIn the world of electronics 1s considered to be the

ximation of safe bits
lop. These are one-bit memory elements that are capable of exhibiting
ither of two stable states (i.e. bistable). Wh fficient current
Y% h from o voltage 1 an However when the

A1 | 1t may cause the bistable device to remain for
O fle erent fI'O M an y Of
the above two states. Mathematically, this phenomenon is due to the fact that
a continuous function assuming the values 0 and 1 will also have to assume
any value between 0 and 1 (known in mathematical analysis as Bolzano’s
theorem). For a formal description of this phenomenon we refer the reader to
[30]. However we will not be concerned here with such situations. The ideal-
1zed safe bits we have in mind are ‘perfect’ bistable devices that do not exhibit

the above metastability phenomenon.

3. INITIAL ALGORITHMS

Here we study several relatively simple implementations of the CRCW prob-
lem. Although we will never mention it explicitely we assume that all the regis-
ters given below begin the execution of their respective protocols with some
consistent initialization. In order to avoid unnecessary notational complica-

tions we describe all our protocols rather informally using the basic statements

L

write and read. It should be stressed however that these are merely assignment
statements of the form x:= F(y,,...,y,), where F is a function symbol in
the protocol language and x,y,, . . . ,y, are protocol variables.

3.1. Two examples

One of the most surprising aspects of the CRCW area is the ease with which
one can provide either unsatisfactory or wrong algorithms. We illustrate this
in the present section with two examples. In both instances we want to imple-
ment a IWI1RbB atomic variable using atomic bits. We represent a given
value 0<<v <2’ by its binary encoding, with b bits. The main idea in executing
read and write actions in the compound register is the following. To write a
value v the writer writes the binary encoding of v in a track (or buffer) consist-
ing of b spaces (subregisters), one for each bit. To read a value the reader
enters a certain track (specified by the algorithm), reads all the bits in the
track and returns the sequence of b bits it read.

In our first example, there is an infinite sequence of tracks #ry,tr,,... each
consisting of b atomic bits that can be read by the reader and written by the
writer. Next we consider the following algorithm [13]; x is an atomic shared

variable that can be written by the writer and read by the reader. To write a
value v the writer executes the following protocol.

312

x:= x +1;

To read a value the reader executes the following protocol.

valu C ﬁ'O

In the above protocol, the reader always reads the most recently written value
and this value is always correct. There should be no difficulty in venfying that
this register is atomic. However there is a slight problem with this register. |
uses infinite space, nai an infinite number of length b tracks.

[herefore one is lead to limiting the number of tracks. In our second exam-
ple we assume that there are only three tracks, numbered try, try, try [25].
Consider a function f such that f(x,y)7 x.,y, for all x,y = 1,2,3. Further let
Kr, Ky be two 1W 1R three-valued atomic registers. Ky (respectively, Ky) 1s
written by the reader (respectively the writer) and read by the writer (respec-
tively the reader). To write a value v the writer executes the following proto-
col.

write v on track tryx, k)

write new track number f (Kg, Ky) on Kyy;

To read a value the reader executes the following protocol.

write track value read above in Kg;

turn the value on track numbered trg_;

[his register satisfies the necessary bounded space requirements. It uses three
tracks each of length 5. Hence the total space used is 3-b+ O (1) and the time
is b+ O(1). Unfortunately it fails to be atomic. A moment’s reflection will
reveal that the reader and the writer may very well collide on the same track,
in which case the reader could report a ‘meaningless’ value. We will see 1in Sec-
tion 4.1 how to resolve this subtlety.

3.2. The basic implementations

We now begin by considering protocols that ‘gradually’ solve instances of the
CRCW problem. The first simple construction concerns implementing regular
bits with safe bits and is due to L. Lamport [24]. Suppose that K represents a
safe bit. We implement a regular bit K’ as follows. The reading operation 1s
performed by merely reading K. Concerning the writing operation, the main
‘trick’ is that in order to write the value b the writer ‘avoids writing the same
value twice’, i.e. let / be a variable which is local to the wrniter.

313

l:=b;

We can prove the follows

ng simple theorem.

M 3.1. ([24]). A regular bit can be implemented with a safe bit.

Next we procee
distribution problem. We implement a single writer b-bit register by using only
single writer single bit registers. As opposed to the previous examples where
ed binary encoding, we will now use unary encoding, 1.e. the value v 1s
represented by v — 1 zeroes followed by a 1 at the v-th position. Suppose that
Ky, ...,K, are single bit, single writer registers and let K be the n-valued
register in which the write and read operations are performed as follows. To
write a value v the processor writes the bit 1 on register K, and sets all the pre-
vious registers K, ...,K,_; to O beginning with K, _;, and moving back-
wards all the way down to K. More formally, in order to write the value v the
processor executes the following protocol.

write 1 on K V)

ite 0 on K, od;

To read a value the processor returns the first v such that K,: =1 but for all
u<v K,:= 0. More formally, in order to read a value the processor executes
the following protocol.

This protocol constitutes construction 4 in Lamport’s paper [24] which also
proves the following theorem.

THEOREM 3.2. ([24]). A regular, single writer, m-reader, n-valued register can be
implemented with n regular, single writer, m-reader, single bit registers.

It 1s not hard to see that X can fail to be atomic even if all the K,’s are atomic.
For example, consider the initial value 3= (0,0,1) in the above implementation
of a 3-valued register with three atomic subregisters. In the following sequence

of actions the second read read, returns the old value 2 while the first read
read; returns the new value 1.

314

read . reads x; = 0 and continues

write, (writes vame 1): writes xa = E
write, (Wri alue 2): wri
read,: reads x, = 1 and return
read,: reads x, = 1 and return
write,: writes x; = 0 and ends

in a rather clever twist it was observed by K.
modifica U om of the read

. kar [45] that a
op emnon can lead to an atomic regﬁsteﬁx All
_ 1ithm needs to do is after findin g the first 1,
n K,— 1, not m repom v as the wvalue read, but instead to
backstep, read the vaﬁ ues K nrough K, over again and report instead the

mallest u<xv such that X [he wmer protocol remains unchanged. T
read a value 1n tl " the processor executes the followin
protocol.

modifi ed register K

u:=v,
for i:=

For this new modified register we can prove that K’ 1s atomic if each X, 1s. In
fact we have the following theorem.

[HEOREM 3.3. ([45]). An atomic, single writer, m-reader, n-valued register can be
implemented with n-atomic, single writer, m-reader, single bit registers.

There are several problems with this last algorithm.
cate the shared variable among many users. It would also be wrong to think
that Theorem 3.3 has solved the distribution problem of implementing an
atomic multivalued variable from atomic bits. A moment’s reflection will show
the disadvantages of using the unary encodmg of numbers. The above algo-
rithm implements a single writer, b-bit, atomic variable by usmg an exponen-
tial number (i.e. 2°) of sis writer, atomic bits. We will show 1n Section 4.1
that this can be done more efficiently by using only O(b) atomic bits, 1n the
1 W 1RbB case, and in Section 4.2 in O (n*-b) atomic bits, in the 1 WnRbB case.
Finally, the most general nWnRbB case is studied in Section 4.3. It 1s exactly
this interplay between time and space complexity of an algorithm and the
difficulty of proving its correctness that creates numerous interesting and unex-
pected comphcatlons in this area.

Here is a summary of the main single writer implementations gwen in the
present section. The first column is the paper, and the second column gives the
number and type of subregisters required to implement the register in the third
column.

For once it does not repli-

315

1] MAIN ALGORITHMS

We can now proceed with some of the main solutions to the CRCW problem.
Here we show how to implement atomic multiwriter, multireader, multivalued
shared variables using as building blocks the idealized flip-flops (also called
safe bits).

4.1. Atomic bits

There are two important points that must be considered in implementing
1 W 1RbB registers. The first is that in order to minimize the space used we
must employ binary encoding of the values concerned. This means that we
will write the values on a finite number of tracks (or buffers) each consisting of
b single bit subregisters. Clearly on such a b-bit buffer we will be able to write
and read values in the range from 0 to 2°—1. The second is that we will
implement a switch (i.e. protocol together with some extra bits) that will even-
tually enable the processors to alternate among the tracks in order to read and
write, respectively, values in such a way that the desired correctness properties
of the protocol are satisfied. In doing this we are lead to considering two
types of protocol implementations. In the first one pure copies are used, 1.e.
the copies of the simulated object are never overwritten while they are being
used, while in the second one they may not necessarily be pure. There 1s an
interesting interplay between these two types of constructions. As expected,
the pure copies construction uses more space but less time, while the reverse 1s
true in the impure copy construction.

Using impure copies G. Peterson [39] implements an atomic 1M1
ter with atomic 1WnR bits. Peterson’s idea is roughly as follows. The desired
shared variable is implemented on three tracks. The writer writes the value
three times, once on each track, and the reader reads the values from each of
the tracks but in different order than the writer. He then implements a switch
that permits the reader to decide which value was read ‘without collision’. The
switch must consist of atomic bits since it must able to detect collisions in the
three tracks. Next L. Lamport [24] implements an atomic bit using a finite
number of safe bits. Combining these two implementations we obtain a modu-
lar construction of an atomic, single writer, single reader register.

nRbB regis-

THEOREM 4.1. ([24,39]). Using impure copies, an atomic, single writer, single
reader, b-bit register can be implemented, with 3-b + O (1) safe, single writer, sin-
gle reader bits, in time 3-b + O (1).

316

_ version of Peterson’s construction due to

npler control str

of three atom bits: ¢, writing, reading, three safe b-bit tracks: tro, 1ry
and the copy track czr. The wrnter also uses two local boolean varnables ¢/, wi.
modulo 2 addition.) To read a b-bit value the processor executes

b it b] from Writin g;
write bit b, D 1 to reading;
d bit b from c;
| track ry;
d bit b, from writing;
turn value from 1r,

To write a b-bit value v the processor executes the following protocol.

cl:=cl D 1;

write value on frr cls

write ¢/ 1n ¢;

read bit b, from reading;

write value v on cir;

hn | in [24] we obtain the following
heorem 4.1.

improvement of]

THEOREM 4.2. ([24,47)). Using impure copies, an atomic, single writer, single
reader, b-bit register can be implemented, with 3-b + O (1) safe, single writer, sin-
gle reader bits, in time 2-b + O (1).

Another idea is to implement a switch that will enable the processors to alter-
nate on the tracks but in such a way that they never have to execute a write or
read action on the same track at the same time. Since in this case the tracks
are collision free they can be assumed to conmsist of safe bits. Also, unhike
Peterson’s original construction, the switch of the four track register need only
be regular, which gives a direct implementation of the desired register from
regular subregisters. Thus, using pure copies [19] implements an atomic
1 W 1RbB register with 4-b+39 safe 1W 1R bits, in time b +26; this was later

317

direct construction of the required register in the following theorem.

'HEOREM 4.3. ([19,42]). Using only pure copies, an atomic, single writer, single
reader, b-bit register can be implemented, with 4 b+ O(1) safe, single writer, sin-
gle reader bits, in time b+ O (1).

Next we present a slightly weaker version of Tron four track register (for
details on his 4-b+8 construction consult [42]). The register consists of the
following subregisters. Four safe b-bit tracks divided into two groups:
T,={troo0,tra 1}, a=0,1. An atomic bit W (R) to be written by the writer
(reader) and read by the reader (wrter) and two atomic ‘display’ bits D, D,
to be written by the writer and read by the reader. Also the writer has the
local variables w, dy, d; and the reader the local variable r. To write a b-bit
value the writer executes the following protocol.

W.=w;

d,.=d, D1;
write value on track tr, 4 ;
D, .=—d,

fi

To read a b-bit value the reader executes the following protocol.

read bit a from D,;
read b-bit value from track tr, ,

Next we summarize the space and time complexity of the above constructions.
First, some explanations are needed for the proper interpretation of the com-
plexity tables given in the sequel. By time complexity of a high-level object we
understand the worst-case number of accesses of low-level subregisters required
by the given processors, which for the CRCW problem are readers and writers,
in order to complete a full run of their protocol. By space complexity of a
high-level object we understand the number of low-level subregisters used for
the implementation of the object multiplied by the bit-size of the tags (or time

stamps) used by each individual subregister. With this in mind we have the fol-
lowing table.

318

' b+0 25+ 0(1)
o [a5

T

atomic registers

mplementations we can prove

[HEOREM 4.4. ([38,42]). 3 safe bits, 2 written (read) by the writer (reader) and
one by the reader (writer) are necessary and sufficient to implement an atomic bit.

4.2. Atomic multireader registers

We now come to a more complicated problem. It concerns the construction of
multireader shared variables which are written by a single writer, from single
writer, single reader registers. This problem was solved simultaneously by four
different groups of researchers L. Kirousis, E. Kranakis and P. Vitanyi [19], J.
Anderson, A. Singh and M. Gouda [5], G. Peterson and J. Burns [36], R.
Newman-Wolfe [33] by using entirely different algorithms. A new algorithm
was later reported by A. Israeli, M. L1 and P. Vitanyi [18]. Two among these
five papers, [19] and [33], implement algorithms that use pure copies. As such

they achieve better reader-time. Here 1s a table of the known implementations
together with their complexity.

PAPER | SPACE WRITER-TIME | READER-TIME

[19] O (n*(n +b))

O +5)
0GTE) | 0wrb)
33] O(n-(n +b)) (n-b)
G| 0G5 | 0wh)

28] | O(n’b) " O(nb)

1 WnRbB atomic

pro—
|
berd

36]

li

FIGURE 3. From 1W 1R 1B atomic to

In addition [46,48] reports two simple constructions of atomic, multireader,
multivalued registers from multireader, atomic bits.

4.3. Atomic multiwriter registers
Finally we come to the most difficult problem in this area. Implementing a

multiwriter shared vanable.

The first such multiwriter implementation due to B. Bloom was rather
unique for its simplicity, but it concerns only the construction of a two writer
atomic register. Suppose that Ky, K, are two b + 1-bit, atomic, single wrter

319

tents of the registers as pau's (2, Vi), where t; e{O 1} 1S a mg
Also let © denote modaul ddits | he algor
EWO writer regls&er 1S as foﬂows

ites a value

Writer p,, i =0,1, w

18 pp I‘OPH&E@ tag

 WRITES THE VALUE v:
d the tag f;g; from K;@:;
write (i ®t,4,, v) to register K;;

[he reader p; (i =0, . .., n—1) reads twice. At first, it reads the tags in both
Ko, K, say tg, t, and then returns the value 1t reads 1n register K, o, , after a

second reading.

pi READS A VALULE:

read the tag 7y from Ky;
read the tag 7, from K ;
return the value from K t,Dr, .

(Incidentally, notice that all the readers execute exactly the same protocol.) It
can be shown that the resulting two writer register 1s atomuc [8]. Hence we
have the following theorem.

[HEOREM 4.5. ([8]). An atomic 2WnRbB register can be implemented with two
atomic 1WnR (b + 1)B registers.

The first attempt at solving the general multiwriter problem with bounded tags
was by P. Vitanyir and B. Awerbuch [43]. This construction uses single writer,
single reader registers to implement the desired register, but the ‘base’ registers
must have unbounded tags. Here 1s a description of the algorithm. The n Xn
matrix register K consists of n* atomic, single writer, single reader, subregisters
K, ,j=1,..,n. Each processor p; is connected to the write termunal of X ;

and the read terminal of K;;, j=1,...,n. Each subregister can hold a pau'

(tag, value); tags are pairs (k,i), where k 1S an arbitrary non-negative integer
and i=1,..., n, whi

le value 1s the actual value which will be either read or writ-

ten. The writer reads its column, updates its tag and then writes its updated
tag and value to all subregisters in its row.

- WRITES THE VALUE v:
or j . — i, eeey N read K j,i;
compute the lexicographically largest tag (k .x,7”) among the tags

just read and set own tag to (k ., +1,1);

320

'he reader reads its column, stores the value corres ponding to the maximal ta g

and up dates 1ts tag. It then writes 1ts - ta g as well as the value it stored
all subregisters 1n 1ts row.

p .

!
)] . - E, ceey 11 T g K.

Jd)

to (k max» i)9

Vs

Inspecting the above protocol it is not difficult to see that the ‘diagonal’ regis-
ters K;; are not shared, but are only used by processor p;, for i =1,..,n,
respectively; hence they are not necessary. For this multiwriter, multireader
register we can prove the following theorem.

HEOREM 4.6. ([4,43]). The matrix register is an atomic, n-writer, n-reader regis-
ter which can be implemented with n*—n atomic, single writer, single reader
registers with unbounded tags.

Despite its ‘elegance’, the space complexity of the matrix register is infimite and
as such this register does not provide a solution to the CRCW problem. A sub-
sequent implementation, due to G. Peterson and J. Burns [37], used some of
the ideas of the bounded tag version of the matrix algorithm [43] (which was
later found to be erroneous) together with the new idea of repeated reading in
order to restrict the number of time stamps to a finite number, but their algo-
rithm was later found to be wrong by R. Schafter [41]. This last paper corrects
the [37]-register and provides a correctness proof of the new implementation
using input output automata. Another construction was also given by M. L1
and P. Vitanyi [29]; its correctness proof is given in [28]. Here is a table of the

known multiwriter, multireader, atomic registers together with their complex-

1ty.
37] + [41]

[[29] + [28] | O(n’-b)

RE 4. From 1P WnRbB atomic

IR 1B atOHﬂC to nl

FiG

321

4.4. In terfa ces for mul np rocessor re gzszers

e construction of aton

1C registers is
n 1nfini te ta g

1S relatlvely easy to prove atomuc if the base registers
m possess unbounded tags. However the same problem is
 the bounded tag case. One is therefore led to the following
1meresung estion. Can we construct interfaces for convertin g a given
unboun ded mg algo rithm (like the matrix register) into a bounded tag algo-
al amp systems in the case where
no two operations are concurrent. A significant improvement 1s reported by D.
Dolev and N. Shavit in [11] which provides bounded concurrent time-stam
systems.

5. PROVING CORRECTNESS
Proving the correctness of CRCW protocols can always create heated debates
among researchers in the field. Time and again the usual intuitive approach for
proving correctness consisted in proving first the correctness for unbounded
tag registers, and then showing that in fact a finite number of tags is sufficient.
[he first part has usually been easy to do; after all you design the algorithm
with this property in mind. The second part is usually the main point of con-
tention. Usually, you need to make some adjustments and modifications to the
initial infinite tag protocol in order to convert it 1nto a finite tag protocol. But
alas this often complicates the correctness proof of the original protocol to
such an extend that you run the risk of losing track of what you are trying to
do. Such examples abound in this research realm and must have certainly
been experienced by any researcher. We hope that the reader has been con-
ced of that by the two examples given at the beginming of Section 3. There-
fore correctness proofs are not something to be viewed lightly in this domain,
but on the contrary it is an area of vital importance.

We have not given the proofs of any of the theorems in the paper. However
it should be stressed that most of them (especially the ones on multireader and
multiwriter protocols) require rather laborious proof techniques (the single
exception being the implementation of a flickering bit from a flip-flop). In the
sequel we consider several proof techniques that have been used to prove the

correctness of the CRCW protocols and refer the interested reader to the origi-
nal papers.

53.1. Lamport’s semantics

L. Lamport [24] introduces register axioms and system executions for single
writer registers in order to give rigorous proofs of the atomicity of his 1mple-
mentation of an atomuc single writer, single reader register from safe bits. The
main notion providing the ability to build hierarchicaly the compound registers
1s that of system execution. These are triples 5= (4, —>,— —>). Intuitively,
— stands for ‘precedes’ while —— stands for ‘can causally affect’. 4 is a

322

countable set representing the set of read and write actions of an execution,
and —>,——> are binary relations satisfying axioms A, A, , A3, A4, As
below, for all a,b,c,deA:

{,: —> is an irreflexive, partial ordering,

4,: if a —>b then a——>b and not (b~ —a),
4s:if a —>b-—>cora-—>b —>c then a—- —c,
As:ifa —>b-—>c¢ —>d then a —>d,

44: if a—>b —>¢c——d then a— —>d,

As: the set {beA:not(a——>b)} is finite,

4¢: a —>b or b——a.

If in addition the system execution satisfies axiom A4 ¢ then it is called a global
system execution. Global system executions are intended to capture the natural
order of actions when there i1s a global time reference system (of which the
processors need not be aware). By global time models we understand triples

s(a)=<f (a) and for all real numbers ¢, the set {a€Ad: s(a)<<t} 1s finite. Every
global time model gives rise to a global system execution. Simply define

a—>b < f(a)<s(b), and
a-—>b<ss(a)<f(b).

But also conversely, we can prove the following theorem.

THEOREM 5.1. ([23]). Every global system execution is isomorphic to a global time
model. More generally, every system execution can be extended to a global system
execution.

Another class of system executions is obtained from the set A of all nonempty
subsets of a partially ordered set (P, <<). The system execution defined by

a —>bsVxeaVyeb(x <y), and
a-—>b<eIxealdy eb(x <y),

satisfies axioms A, A, A3, A4, As. (According to [7] this last axiom was first
proposed by Abraham in [1].) Extending Theorem 5.1, S. Ben-Dawvid [7] (and
independently Anger) proves a completeness result for Lamport’s axiomatic
system.

THEOREM 5.2. ([7]). For every global system execution $=(A, —>,~—>) on a

set A of actions satisfying axiom Ay there is a class S={g=(A, —2 4 ~2,)}
of global time models with the same set A of actions such that for all a,b€A,

a—>b if and only if Vgeb(a —>,b), and
a-—>b if and only if Vgeb(a——>,b).

323

It follows that global time models capture the full provability power of global

m executions satisfying axiom A 4. [24] also gives three communication
axioms By, B, B, concerning operation executions on the same single writer
register. Axiom B, states that the write actions on the same register must be
linearly ordered by —>, say

Wl —w! — - S wh— -

Axiom B, states that for any read r and any write w to the same register either
w——r or r——w, while B, states that a read obtains one of the values that
may be written in the register. A read r is said to see w!Y! where
| = max{k:not(r-——%w")} and j= max{k: wk-—>r}. Next Lamport defines
hree types of single writer shared vanables.
safe: a read that sees w!*'! obtains the value w',

oular: a read that sees w!*/] obtains the value w”, for some i <k <,
omic: if a read sees w1 then i = /.

Notice that the above definition of atomicity refers to registers that are actually
atomic, i.e., no overlapping of a read with more than one write 1s allowed
(overlapping of reads that read the same write 1s allowed, but this obviously
does not affect the serializability of the operation executions). In other words,
operation executions are essentially a priori linearly ordered. In contrast to
this approach, in Section 2.1 we defined atomicity in a virtual sense, 1.e. we
allowed overlappings of a read with many writes, but we put as a requirement
the existence of a linear order which represents the succession that operation
executions seemingly follow. The two notions are connected in the following
theorem:

[HEOREM 5.3. ([24)). Let S=(4, —>, ——>) be a system execution on a regular
register w such that there exists an integer-valued function ¢ on the set of reads
satisfying

1. if r sees w1 then i<¢(r)<j,

2. r returns the value w'*"),

3. ifr —> r then ¢(r)<¢(r),

for all reads r,r'. Then & implements a system execution in which w is an atomic
register.

This proof techs has been used in [24] to prove the correctness of his algo-
rithms in Subsections 3.2, 4.1.

5.2. Semantics with a single causality relation

[his semantics was developed by B. Awerbuch, L. Kirousis, E. Kranakis and
P. Vitanyi in [4] in order to prove the correctness of atomic, multiwriter regis-
ters. In a general readers/writers protocol there are two types of actions which
are being executed: reads and writes. Let A be the set of such actions associ-
ated with an execution of the protocol. Let R and W be the sets of read and
write actions, respectively, such that A=RUW and RNW = . It is possible

324

inary relation (partial order-
| am PO rt’s semantics. Intu tlvely .
if neither a—b nor b—a. Also, a write w
1s said to directly preced ! » and there is no write w such that
w—-w —r. In addition to the precedence relation —, it is assumed that there
is a readin g function 7: R /' associatin g W ith each read action reR the
n «(r)e W which is read by r. The triple p=(4,—,7) is also called a
protocol. We distinguish the following types of runs p =(4, —,m).
nal: 7(r) either precedes r or is concurrent with r.
lar: 7(r) either directly precedes r or is concurrent with r.
mic: There is a total order = extending — (external consistency), there
is no write w such that m(r) = w = r (internal consistency) and =(r) = r.

rm . Meertens [31}].)
[he clan [w], of a write w is the set {w}U {reR: n(r)=w}. Define the
relation w—* w’ to mean that for some a€[w],, a’€[w],, a—a’. In proving
the atomicity of registers the following criterion has proved to be useful.

THEOREM 5.4. ([4]). For any run p of a register,

1. p is atomic <p is normal and —* is acyclic.

2. For single writer registers, p is atomic < p is regular and 7 is weakly mono-
tonic.

The above proof technique has been further elaborated in [4] to include com-
munication axioms for multiwriter registers and was used successfully to prove
the correctness of the matrix register [43], the two writer register [8], the four
track registers [19] and [42] and the multiwriter register in [28,29].

Clearly, the theorem is an extension of Theorem 5.3 to multiwriter registers.
The first part of the theorem had been discovered independently by K.
Vidyasankar [44] in the context of database serializability [34,35]. An
equivalent axiomatic formulation of the theorem was given by G. Peterson and
J. Burns [36]. They provide a list of seven axioms BC,—BC,; which must be
satisfied by a precedence relation in order to be atomic. They also point out
that for the case of single writer registers these seven axioms reduce to the last
two BCg, BC,. However, their axiomatization does not in any way enhance
or shorten the atomicity proofs.

In some cases it may be possible to associate an open time interval
(s(a),f (a)) to each action a€A, where s,f: AR are real-valued functions;
s(a) is the starting and f (a) the finishing time of the action. An important
aspect of atomic runs concerns the instantaneousness of their execution, 1.€.
although their actions have an actual duration (possibly overlapping one
another) in a global time reference system each individual action may be con-
sidered to take place at a particular instant. If the causality relation — 1S
induced by a representation of the actions as open time intervals then it 1s pos-
sible to ‘shrink’ the duration of the actions to a time instant. A shrinking

325

on is a one to one mapping associating to each interval (s(a),f (a)) a real
umber o(a) 1n this interval. The relation a <<°b defined b y o(a)<< o(b) ind

' HEOREM 3.5. ([4]). For any run p of a register, if — is the order induced by the
representation of the actions A by open time intervals then p= (A, —,) is atomic
if and only if p is shrinking atomic.

defined by N. LyIlCh and

M. Tuttle (see [27] for an
_ . This model has been used in [26] to prove the correct-
ness of the Bloom register [8], the matrix register [43], [4], as well as by [41] to
correct the modified multiwriter algorithm in [37]. '

It 1s also interesting to note that J. Tromp [42] in the full version of his
paper develops a finite state automaton, the atomicity automaton, for proving
the correctness of his four track protocol. Transitions in the atomicity auto-
maton represent beginnings and ends of read and write actions, while nodes
represent the atomucity state of the shared variable. This makes possible the
application of automatic verification methods for proving the correctness of the
protocol (this 1s of practical interest as well, and ought to satisfy even the most
skeptical).

6. CONCLUSION

Due to both hardware and software design-constraints conventional program-
ming methodology has limited itself mainly to environments with serial mode
of operation. However, this is not only too restrictive, but in addition, runs
contrary to the parallelism encountered by many physical machines of every-
day hife [12]. Although we are still far from creating a thorough framework for
writing, implementing and proving the correctness of parallel programs, there
is no doubt that there are several programming tasks which are naturally
amenable to parallel methodology. Surprisingly, we have shown that the
CRCW problem is such a parallelizable task.

'he solutions of the CRCW problem presented here also raise a very
relevant question. Can we implement higher level register objects (like atomic
test-and-set, mutual exclusion, etc.) using atomic registers? It was shown by M.
Herhihy [14] and M. Loui and H. Abu-Amara [22] that this is indeed 1MpOsSi-
ble. For more information consult [2] and [20]. The impossibility results just
cited have also given rise to another line of research. It concerns randomized,

wait-free implementations for the above primitives. For more details consult

326

[n the present p aper we have outlined some of the most i nportant algo-
ithms and proof techniques in the concurrent t ers and writers area. The
implicity of the problem as well as its importance for implementations in
Ed enviro nments - a flurry oi ae.,uwiy by nun erous researchers
d concurrent writing is now better understood and its wait- ﬁ'ee feasibility 1s
beyond doubt, correctness proofs of the emstmg protocols (especially the mul-

writer ones) are still con catcd and hard to comprehend. It is therefore
important that more efforts are directed at
® providing new, simpler algorithm
ob] Jects concerned,

fining and amplifying existing proof methods using order semantics, that
will clarify and illuminate our understanding of parallelizable program-

implementing the concurrent

7. ACKNOWLEDGEMENTS

We are thankful to P. Vitanyr for numerous discussions on the topics
presented 1n this brief survey. John Tromp provided useful comments on a
first draft of the paper.

REFERENCES

1. U. ABRAHAM, S. BEN-DAvVID (1987). Informal and formal correctness
proofs for programs (for the cirtical section problem. Reprint.

2. J.H. ANDERSON, M.G. GouDA (1987). The Virtue of Patience: Concurrent
Programming with and without Waiting, Technical Report 78712-1188,
Department of Computer Science, Umversity of Texas.

3. James ASPNES, MAURICE HERLIHY (1988). Fast Randomized Consensus
using Shared Memory, Technical Report CMU-CS-88205, Carnegie Mel-
lon.

4. BARUCH AWERBUCH, LEFTERIS M. KIROUSIS, EVANGELOS KRANAKIS,
PauL VITANYI (1988). On proving register atomicity. K. NoRri, S.
KuMAR (eds.). Proceedings of the 8th Conference on Foundations of
Software Technology and Theoretical Computer Science, Springer Verlag
Lecture Notes in Computer Science, Heidelberg, Vol. 338.

5. J.H. ANDERSON, A. SINGH, M.G. Goubpa (1987). The elusive atomic
register. Proceedings of 6th ACM Symposium on Principles of Distributed
Computing, Vancouver, Canada.

6. M. BEN-ARI (1982). Principles of Concurrent Programming, Prentice Hall
International.

7. S. BEN-DAvVID (1988). The global time assumption and semantics for con-
current systems. Proceedings of 7th ACM Symposium on Principles of Dis-
tributed Computing, Toronto, Canada

327

12.

13.
14.

15.
16.

17.

18.

19.

20.

21.

22.

23.
24.

25. A. LENSTRA (1987). Personal Comn

iter atomic registers. Proceed-
istributed Computing, Van-

couver, Canada.

PJ. Courtols, F. HEymans, D.L. ParNnas (1971). Concurrent control

and ‘writers’. Communications o f ACM | 43 667-668.
Cooperating sequential processes. F. GENUYS

, NIR SHAVIT (1939). Bounded Ime-stamp sys-
tems. Proceedings of the 21st Annual ACM Symposium on Theory of Com-
puting, Seattle.

DAVID GELERNTER (1989). Th
ment. Scientific American, 54-61.
. HALPERN (1987). Personal Comu

Nnana ge-—

H nunication.

HeE; ity results for wait-free
nchronization. Proceedings of 7th ACM Symposium on Principles of Dis-
tributed Computing, Toronto, Canada.
W.D. HiLwLis (1985). The Connection Machine, MIT Press.

rOARE (1978). Communicating sequential processes. Communica-

C. " -
tions of ACM 21, 666-677.
A. ISRAELI, MING L1 (1987). Unbounded time stamps. Proceedings of
IEEE 28th Annual Symposium on Foundations of Computer Science, New

York.

A. ISRAELI, MING L1, PAUL VITANYI (1987). Simple Multireader Re gisters
using Time-Stamp Schemes, Technical Report CS-R8758, Centrum voor
Wiskunde en Informatica, Department of Algorithmics and Architectures.
LEFTERIS M. KIrousis, EVANGELOS KRANAKIS, PAUL VITANYI (1988).
Atomic multi-reader register. JAN VAN LEEUWEN (ed.). Proceedings of
2nd International Workshop on Distributed Algorithms, Amsterdam, J uly
1987, 278-296, Springer Verlag Lecture Notes in Computer Science,
Heidelberg, Vol. 312.

EVANGELOS KRrANAKIs (1989). Functional dependencies of variables in
wait-free programs. Proceedings of 3rd International W orkshop on Distri-
buted Algorithms, Nice, September 1989, Springer Verlag Lecture Notes in
Computer Science, Vol. 392.

EVANGELOS KRAN

fest

BU-AMARA (1987). Memory requirements for agreement

among unrehable asynchronous processes. Advances in Computing

Research, JAI Press, 163-183.

LESLIE LAMPORT (1985). In terprocess Communication, Tech
RI International.

LESLIE LAMPORT (1986). On INterprocess comn

formalism, part ii: basic algorith:

>

11cal R eport,

lunication, part i: basic
ns. Distributed Computing 1, 77-101.
junication.

328

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

mata. CWI Oua rterév 2, 217
Am, WTANW {3989}

Sci ence,
LL.R. MARINO (w 8 6). General theory of

Tmnsactwns on Con pw‘ers C-30 107-115.

142-153.
R. NEWMAN-WOLFE (1987). A protocol for wait-free, atomic, n
share

memory access in asynchronous hardware
Tmnsacz‘i ons on Programming Languages and Systems 8,

ulti-reader
d variables. Proceedings of 6th ACM Symposium on Principles of Dis-
tributed Computing, Vancouver, Canada.
CHRISTOS PAPADIMITRIOU (1979). The serializabili ly of concurrent data-
dates. Journal of the ACM 16, 631-653.

PAPADIMITRIOU (E986) Theory of Database Concurrency Con-
trol Co iputer Science Press

GARY PETERSON, JAMES BURNS (1987). Concurrent reading wh ile writing
(i). Proceedings of 6th ACM Symposium on Principles of Distributed Com-

puting, Vancouver, Canada.

GARY PETERSON, JAMES BURNS (1987). Concurrent reading while writing
(i1). Proceedings of IEEE 28th Annual Symposium on Foundations of Com-

puter Science, New York.

GARY PETERSON, JAMES BURNS (1987). Sharp Bounds for the Concurrent
Reading while Writing Problem, Technical Report GIT-ICS-87/31, Georgia
Institute of Technology.

GARY PETERSON (1983). Concurrent reading while wriing. ACM 1ran-
sactions on Programming Languages and Systems 5, 46- 55

AMIR PNUELI, LENORE ZUck (1986). Verification of multiprocess proba-
bilistic protocols. Distributed Computing 1, 53-T2.

R. SCHAFFER (1988) 0n the Correctness of Atomic Multiwriter Registers
without Wai . Massachusetts Institute of
Technology Laboratory for Computer Science.
JouN Tromp (1989). How to construct an atomic vanable. Proceedings
of 3rd International W orkshop on Distributed Algorithms, Nice, September
1989, Springer Verlag Lecture Notes in Computer Science, Vol. 392.

PAUL VITANYI, BARUCH AWERBUCH (1986). Atomic shared register access
by asynchronous hardware. Proceedmgs of IEEE 27th Annual Symposium
on Foundations of Computer Science, Toronto. Errata ibid 1987.

329

K. VIDYASANKAR (1985). A simple characterization of database serializa-

bility. Proceedings of the Sth Conference on Foundations o f Sofitv
oy and Theoretical Con iputer Science, Springer Verlag Lecture Notes in

Computer Science, Heidelberg, Vol. 206.

VE DYASANKAR (39 8 8} Convertin g {.Q mporr s Re gular rRe gz’s ter to Atomic

Tec Department of Computer Science,

Wiriter Multireader Multivalued
Department of Computer Sci-
NKAR (1988). Improving Peterson’s Construction of I1-Writer n-
Multivalued Atomic Register, Technical Report 8808, Department
of Computer Science, Memorial University of Newfoundland.

KAR (1 988) A New I-Writer Multireader Multivalued Atromic
_ hnical Report 8804, Department of Computer Science,
Memonal Un versuy of Newfoundmnd
49. A. VAN W ARD 8.J. MAILLOUX, J.E.L.

WIINGAARD B.J. PEck, C.H.A. KOSTER
(1969). Report on the algorlt mic language algol68. Numerische
Mathema tzk 14, 79-218.

hnical R Report 8807
versﬂy of Newfoundla

48.

330

